

State of the Art Optical Thin Film Analyses for Industrial Applications

René Feder, Christian Patzig, Stephan Gierth, Alexander Kemptner, Thomas Höche

Fraunhofer IMWS

Who we are

The Fh IMWS is a methodologically oriented portfolio institute.

Optical Materials

Tailored microstructure diagnostics

Focus and know-how

- Microstructure-based development of glasses and ceramics
- Microstructure-based laser process development
- Microstructure analysis of thin films, glasses and ceramics

Optical Coatings Cutting Edge Analytical Techniques

FIB-SEM (+EDX)

- Imaging of surfaces and cross sections
- Composition (0.1at%)
- HR-(S)TEM (+EDX)
- Cross section
- Microstructure & composition
- ToF-SIMS
- Surface analysis
- Depth profiling
- Contaminations (ppb)

Ophthalmic lens coatings

A complex hybrid system

- 2001: 23% short sighted world wide.
- Increasing in younger age groups.
- In 2050, 50% of the world population will be myopic.

Layer	Thickness
Top coat	1-2 monolayers
Broadband anti-reflective	Few 100 nm
Anti-static (included in AR)	< 10 nm
Hard coating	~ 3 µm
Hard coating primer	~ 800 nm
Polymer substrate	~ mm

Ophthalmic lens coatings SEM-FIB-EDX

Ophthalmic lens coatings HR-TEM

 TEM: high-res overview of the complete coating system (AR, hard coat, primer).

Distribution, density gradients or agglomeration of nano particles can be detected.

Ophthalmic lens coatings STEM-EDX

- STEM-EDX: high-res imaging and elemental distribution of the AR stack.
- Interface roughness, layer inhomogeneities and diffusion can be visualized.

Ophthalmic lens coatings ToF-SIMS

Si+ Ti+ ln+ ZrO+ Na+ Al+ Cr+ A DE LA D 250 300 350

- ToF-SIMS depth profiles:
 - Main AR components
 - Contaminants (sample) surface, AR/HC interface)
- Organic depth profiling
- Detection of volatile components

Laser mirror coatings

State of the Art Methods applied to (damaged) Laser Mirrors

Reverse engineering
Laser damage evaluation:
Focused laser @514 nm, 211 fs, 30-210 mW

Laser mirror coatings SEM

- 2 purchased laser mirrors (355 nm):
- Laser damage evaluation:
 Focused laser @514 nm, 211 fs, 30-210 mW

Laser mirror coatings SEM + FIB

Laser mirror coatings

ToF-SIMS

Laser mirror coatings STEM-EDX

- 2 purchased laser mirrors (355 nm):
- Reverse engineering
- Contaminations
- Process information (Ar in HfO₂)

Microstructure Analysis

State of the Art Methods Applied to EUV Multilayers

- EUV: huge market, demanding systems. TEM:
- Layer thickness, homogeneity, crystallinity.
- Interface layers discernable.

Samples: Fraunhofer IOF

Microstructure Analysis

State of the Art Methods Applied to EUV Multilayers

- EUV: huge market, demanding systems.TEM:
 - Layer thickness, homogeneity, crystallinity.
- Interface layers discernable.
- ToF-SIMS:
 - contaminations

Ultra Thin Films: Nanolaminates HR-TEM

SiO₂ a-Si 30 nm 5x0.7 nm 5x3.1 nm 5x1.6 nm 5x1.6 nm 5x1.3 nm 5x3.0 nm 5x1.9 nm 5x2.9 nm 5x2.4 nm 5x2.6 nm = 3x6.30 nm $d_{si02} = 3x2.6 \text{ nm}$ <u>20 nm</u> C-Si Wafer (100)

- Nanolaminates: multiquantum well structures with tuneable band gap/refractive index.
- HR-TEM of whole nanolaminate stack: precise thickness control.

K. Kreuzer et al., Applied Optics 63,5 (2024), https://doi.org/10.1364/AO.515083

Samples: Fraunhofer IST

Ultra Thin Films: Nanolaminates

ToF-SIMS

- Nanolaminates: multiquantum well structures with tuneable band gap/refractive index.
- HR-TEM of whole nanolaminate stack: precise thickness control.
- ToF-SIMS: contaminations.

Microstructural Thin Film Analysis

What is it Good for?

Having a look inside

- \rightarrow Direct results vs. indirect hints or conclusions based on assumptions
- \rightarrow Target (e.g. failure) regions can be directly assessed
- \rightarrow Combination of microstructural and chemical information

 \rightarrow Microstructure-based process understanding reduces development times

Contact

René Feder Tel. +49 345 5589-274 <u>rene.feder@imws.fraunhofer.de</u>

Fraunhofer IMWS Walter-Hülse-Straße 1 06120 Halle www.imws.fraunhofer.de Christian Patzig Tel. +49 345 5589-192 <u>christian.patzig@imws.fraunhofer.de</u>

Laser mirror coatings

State of the Art Methods applied to (damaged) Laser Mirrors

- 2 purchased laser mirrors (355 nm):
- Reverse engineering
- Contaminations
- Process information (Ar in HfO₂)
- Surface roughness

